

Bachelor of Science (B.Sc.) Semester—VI (C.B.S.) Examination
MATHEMATICS (Abstract Algebra)
Compulsory Paper—1

Time : Three Hours]

[Maximum Marks : 60

N.B. :— (1) Solve all the *five* questions.
 (2) All questions carry equal marks.
 (3) Question Nos. **1** to **4** have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) Define an automorphism of group G. Find whether a mapping $\phi : G \rightarrow G$ defined as $\phi(x) = x^2 \quad \forall x \in G$ is an automorphism, where group $G = (R^+, \cdot)$. 6
 (B) Prove that $I(G) \approx G/Z$, where $I(G)$ is the group of inner automorphisms of group G and Z is the centre of group G. 6

OR

(C) If G is a finite group, then prove that :

$$Ca = \frac{O(G)}{O(N(a))}, \text{ where } Ca = O(C(a)). \quad 6$$

(D) Let Z be the centre of group G and for $a \in G$, $N(a)$ be the normalizer of a in G.

Then prove that :

(i) $a \in Z \Leftrightarrow N(a) = G$
 and (ii) if G is finite, then $a \in Z \Leftrightarrow O(N(a)) = O(G)$. 6

UNIT—II

2. (A) Let R^+ be the set of all positive real numbers. Define the operations of addition \oplus and scalar multiplication \otimes as follows :

$$u \oplus v = uv \quad \forall u, v \in R^+ \\ \text{and } \alpha \otimes u = u^\alpha \quad \forall u \in R^+ \text{ and } \alpha \in F = R.$$

Prove that R^+ is a real vector space. 6

(B) If S and T are non empty subsets of a vector space V, then prove that

(i) $SCT \Rightarrow [S] \subset [T]$.
 (ii) $[S] = S$ if and only if S is a subspace of V.
 (iii) $[[S]] = [S]$. 6

OR

(C) Let the set $\{v_1, v_2, \dots, v_k\}$ be a linearly independent subset of an n -dimensional vector space V . Then prove that we can find vectors $v_{k+1}, v_{k+2}, \dots, v_n$ in V such that the set $\{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n\}$ is a basis for V . 6

(D) Let $\{(1, 1, 1, 1), (1, 2, 1, 2)\}$ be a linearly independent subset of the vector space V_4 . Extend it to the basis for V_4 . 6

UNIT—III

3. (A) Let U, V be vector spaces over a field F and $T : U \rightarrow V$ be a linear map. Then prove that :

- (a) $T(O_u) = O_v$
- (b) $T(-u) = -T(u)$, $\forall u \in U$ and
- (c) $T(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n) = \alpha_1 T(u_1) + \alpha_2 T(u_2) + \dots + \alpha_n T(u_n)$, $\forall u_i \in U, \alpha_i \in F$, $1 \leq i \leq n$ and $n \in N$. 6

(B) Let $T : V_4 \rightarrow V_3$ be a linear map defined by $T(x_1, x_2, x_3, x_4) = (x_1 - x_4, x_2 + x_3, x_3 - x_4)$. Find range, rank, kernel and nullity of T and verify Rank-Nullity theorem. 6

OR

(C) Let $T : U \rightarrow V$ be a linear map and U a finite-dimensional vector space. Then prove that $\dim R(T) + \dim N(T) = \dim U$. 6

(D) Prove that the linear map $T : V_3 \rightarrow V_3$ defined by $T(e_1) = e_1 + e_2$, $T(e_2) = e_2 + e_3$, $T(e_3) = e_1 + e_2 + e_3$ is nonsingular and find its inverse. 6

UNIT—IV

4. (A) Let a linear map $T : P_3 \rightarrow P_2$ be defined by $T(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) = \alpha_3 + (\alpha_2 + \alpha_3)x + (\alpha_0 + \alpha_1)x^2$. Then determine matrix of T relative to the bases $B_1 = \{1, (x - 1), (x - 1)^2, (x - 1)^3\}$ and $B_2 = \{1, x, x^2\}$. 6

(B) Prove that the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 2 \end{bmatrix}$ is nonsingular and find its inverse. 6

OR

(C) In an inner product space V_i prove that :

- (i) $\|u + v\| \leq \|u\| + \|v\| \quad \forall u, v \in V$
- (ii) Any orthogonal set of no zero vectors is linearly independent. 6

(D) Find the orthonormal basis of $P_2[-1, 1]$ starting from the basis $\{1, x, x^2\}$ using the inner product defined by $f \cdot g = \int_{-1}^1 f(x) \cdot g(x) dx$. 6

UNIT—V

5. (A) Show that conjugacy relation ‘~’ on group G is reflexive. 1½

(B) Show that $I(G) = \{I\}$ for an abelian group G, where $I(G)$ is the set of inner automorphisms of G 1½

(C) Let $S = \{(x_1, x_2, x_3) \in V_3 / x_2 + x_3 = x_1\}$. Prove that S is a subspace of V_3 . 1½

(D) Is the sum x-axis + y-axis in V_3 a direct sum ? 1½

(E) Find whether a mapping $T : V_2 \rightarrow V_2$ defined by $T(x, y) = (x + 1, y + 2) \quad \forall (x, y) \in V_2$ is a linear map. 1½

(F) If U and V are finite dimensional vector spaces such that $\dim U = \dim V$. Then prove that a linear map $T : U \rightarrow V$ is one-one if and only if it is onto. 1½

(G) Show that the matrix $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is unitary. 1½

(H) In an inner product space V, prove that $u \cdot (\alpha v) = \bar{\alpha} (u \cdot v)$, $\forall u, v \in V$ and $\alpha \in F$. 1½